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Graph Analysis

 Graph 

 Fundamental data representation

 Captures random relationship between data entities

 You learned about it in CS 101

 Why graph once again?

 New applications (in lucrative markets) use graph 
analysis– social networks, computational biology, …

 e.g> Analyze molecular interaction graph in your body 
cells to identify key proteins 

 Requires significant processing power

 Underlying graph size is large and growing

 Some algorithms are expensive, i.e. O(n^2) or more

 Classic ILP, Vector Units, FLOPs does not help much

 Let’s use parallelism 



Parallel graph analysis

 Opportunities 

 Plenty of inherent (data-) 
parallelism in large graph 
instances

 100+ years of studies in 
graph theory

 Parallel machines are now 
and everywhere

(Multi-core CPU and GPU)

 Challenges

 Hard to get correct 
implementation

 Performance depends on 
implementation (even with 
the same algorithm)

 The best implementation 
differs from machine to 
machine

 Algorithms need to be 
customized



What’s wrong with libraries?

 There are 30+ graph libraries/packages

 Issues in fixed library implementation

 Parallelism?

 Portability? 

 New/customized algorithm?

 What if someone finds a better implementation 
for the un-customized algorithm?



Our approach: 
DSL for graph analysis

1. Identify key components in graph algorithms as define them 
language constructs. 

2. Find (the best / a good) implementation of those constructs. 

3. Let the compiler translate high-level algorithm written in DSL 
into a high-performing low-level implementation.

 Possibly, apply high-level optimization on the way

Algorithm 
Implementation

DSL
Compiler

For(i=0;i<G.num
Nodes();i++) {

__fetch_and_ad
d (G.nodes[i], 
…)

……

Edgeset

Foreach

BFS

Foreach (t: G. 
Nodes)

t.sigma += 
…

Graph DSL

Graph 
Algorithm



Approaches

 DSL design

 Implementation of language constructs

 BFS for GPU

 BFS for CPU

 Compiler development



Language Design

 Domain property

 The graphs are sparse, small-world, scale-free

 Graph is not mesh-like!

 Graph modification is less frequent than graph analysis

 Language Design: an inductive process

 Examine existing algorithms  Extract language 
constructs

 Check if these algorithms can be naturally expressed 
with the language

 Check if the compiler can figure out inherent parallelism 
from the description. 

*The DSL is named as Green-Marl which means graph language (그림 말) in Korean. 



A Glimpse of DSL Syntax

 Example> Betweenness Centrality

 A measure that tells how center a node is located 
in the graph

 Frequently used in social network analysis

 Computationally expensive: O(NM)



A Glimpse of DSL Syntax 

 Original Algorithm

Meaning?

Parallelism?s

w w

v

BFS
Order

Compute sigma from parents

s

v

w w w

Reverse
BFS

Order

Compute delta from children

Customized BFS 
Iteration
 Need good BFS 
implementation



Language Philosophy

 Goal is not to magically parallelize your sequential graph 
algorithm

 Would you believe it, if I claim so?

 People have devoted their entire career in developing parallel 
graph algorithms

 Instead, it allows you to express your algorithm 
(sequential or parallel) in a natural way

 The compiler grabs out the inherent parallelism in the 
algorithm and exploit it in the implementation

 e.g. Betweenness Centrality is not designed for parallel execution



Consistency Model

 We are targeting different architectures: CPU, GPU, 
(Cluster)

 The language, thus, assumes the most relaxed 
form of consistency

 Enforcing order out of chaos

 High-level operations are atomic (e.g. add to a set)

 Reduction and Deferred assignments 

Foreach (t: G.nodes) {

Int z =  Sum (v: t.Nbrs) {v.Val};

t.Val = z;

}

• Conceptually, Foreach is instantiated all at 
the same time. 

• There is no guarantee update to Val will 
be visible (or not) to other instances, until 
the end of foreach

• It’s not even Total Store Ordering



Consistency Model

 Deferred assignment

 Reduction assignment

Foreach (t: G.Nodes) {

Int z =  Sum (v: t.Nbrs) {v.Val};

t.Val <= z @ t;

}
Write to Val happens at the 
end of iteration bound by t. 

Foreach (t: G.Nodes) {

Foreach (v: t.Nbrs) {

v.B min= t.Val @ t;

}

}

t1 t2 t3

v1 v2

Foreach (v: G.Nodes) {

v.B = Min (t: v.Nbrs) {t.Val };

}

t1 t2 t3

v1 v2

CPU: comp & swap
GPU: atomicMin

Cluster: MapReduce

If the graph is undirected, 
we can exchange iteration 
order to remove expensive 
reduction

Reduction by minimum is 
resolved at the end of foreach 
iteration bound by t. 



I need Sequential Consistency!

 Is this what you want?

 Your algorithm is not deterministic, you know

 We  may add it to the language, though

 Coloring like Listz [Big setup overhead]

 Grab a lock of neighbors 

 Performance is not  guaranteed; due to the graph 
shape (i.e. not mesh)

Foreach (t: G.nodes) {

Atomic {

Int z =  Sum (v: t.Nbrs) {v.Val};

t.Val = z;

} @ t

}



Reduction Assignment vs.
Reduction Operator

 Reduction Assignment (spread-out)

 Reduction Operator (in-place)

Int z = 0;

Foreach(n:G.Nodes) {

If (n.color == 0) { z += n.val @ n;}  

Else {

Foreach (t: n.Nbrs)(t.color == 1) 

z += t.val @ n; 

}}

Int z = 0;

Foreach(n:G.Nodes) {

z = Sum (t:n.Nbrs)(t.color==0) {t.val}; 

}}

+=              Sum
*=               Product
min=           Min
max=          Max
argmax=     Argmax
argmin=      Argmin
+= 1            Count



A Few More on Syntax

 Nodes(Edges) are bound to a graph

 Fields can be defined dynamically and  passed as  
arguments

Graph G1, G2; 

Node(G1) t1; 

Node(G2) t2;

t1 = t2; // Type Error!

Graph G; 

While (…) {

Node_Property<Int>(G) cap; 

…

Foo(G, cap);

} // cap has static scope

Procedure Foo

(G:Graph, d:Node_Property<Int>(G))

{

// …

}

Call common 
routines with 

different fields.



A Few More on Syntax

 Sets

 Operation to a set is atomic: Add/Remove/IsIn

 Set: bound to a graph

NodeSet(G) NSet;

EdgeSet(G) ESet; 

NbrSet(G) NBSet;

NbrEdgeSet(G) NBESet;

Foreach (t: G.Nodes)

Foreach(n: t.Nbrs)

If (n.value > THRESHOLD) {

t->NBSet.Add(n); 

}



A Few More on Syntax

 Static Scope

 Variable name shadowing is not allowed. 

Foreach (t: G.Nodes){

Int k;

Foreach(n: t.Nbrs) {   

Int t; // Error;

}

Int n; // Okay;

}



Some Rules to be Enforced

 Cannot write to an iterator

 Cannot write to a property reference

Node(G) n;

Foreach(t: G.Nodes) {

n = t;  // Okay

t = n;  // Error

}

N_P<Int> (G) val;

N_P<Int> (G) cap;

Node(G) n;

n.val = n.cap // Okay;

G.val = G.cap // Okay;

cap = val; // Error;



Some Rules to be Enforced

 Reduce (Defer) Assignment should be bound once and 
only once.

Int z = 0;

Foreach(t: G.Nodes) {

z += t.val @ t;

Foreach (n: t. Nbrs) {

z += n.val @ t; // Okay

z += n.val @ n; // Error

z min= n.val @t; // Error

}

z = 3; // Error

}

Z += 3; // Error



Parallelization

 Assumption

 Graph is large

 Otherwise uninteresting. 

 One operation is enough to consume all the cache & memory 
bandwidth

 Strategy

 CPU: Parallelize inner-most graph-wide iteration 

 GPU: two-level parallelization: sub-warp + thread

Foreach(t: G.Nodes) {

…

Foreach (n: G.Nodes) {

…

Foreach (r: n.Nbrs) {

}

}

}

GPU:
subwarp (outer)
thread(inner)



Parallelization 

 Optimization after Parallel Region Decision
Foreach(s: G.Nodes) {

Foreach(t: G.Nodes) {

t.val += …  @ s;  

}

}

Reduction can
be implemented with
normal write

Foreach(s: G.Nodes) {

N_P<Int> temp;

Foreach(t: G.Nodes) {

t.temp += …  @ t;  

}

s.val += s.temp @ s;

}

No need to create 
(and delete) temp, 
O(N) times. 
(Move temp-define 
out of s-loop)



Language Implementation

 Breadth-First Search (BFS)
 An systematical way of traversing a graph

 Enforces a natural (partial) ordering of the graph

 Serves as a building block for other algorithms

(Connected components, Betweenness centrality, Max 
flow computation…)

 Many papers about efficient BFS implementation

(Multi-Core CPU, GPU, Cell, Cray XMT, Cluster) …



 Potentials of GPU in graph analysis

 Large memory bandwidth (but with limited capacity)

+ Latency hiding scheme

 Massively parallel hardware

 Previous implementation [Harish and Narayanan 

2007]

 Level synchronous, frontier-expansion method.

 PRAM-style; each thread processes a node.

 Problem: 

 Performance dropped heavily when applied to scale-
free graphs (i.e. skewed degree distribution)

BFS on GPU  



 What causes this?

 The trait of GPU architecture  Threads in a warp are 
executed in a synchronous way

 Skewed degree distribution  Intra-warp workload 
imbalance

 Our implementation 

[PPOPP 2011]

 Work assignment

 per a subset of warp

 Trade off under-utilization 

and workload imbalance  

BFS on GPU

Previous

Measured on GTX275 (Tesla GPU)

1 32

A unit of work 
per each thread

A unit of work 
per each warp

4 8 16



 Level-synchronous Parallel BFS

 Previous Implementation [Agarwal et al 2010]

 Adopted a few techniques: prefetech, bitmap (Visited), non-
blocking queue (Next/Curr Set)

 Non-blocking queue: sophisticated implementation 

 Reduce synchronization and cache-cache coherence traffic. 

 Not much implementation details revealed in the paper.

BFS on Multi-core CPU

; N= Ǿ



 Observations

 You don’t need a queue. You need a set. 

 Cache traffic due to the queue is thus artificial.  

 Performance is more governed by memory traffic 
(capacity miss) rather than coherence traffic. 

 Our approach [under submission]

 Implement Curr/Next set as a (single) byte-array. 

 Visited set is still a bitmap

 Cons

 (Iteration over set) == (Read the whole byte array)

 Pros 

 No synchronization when writing  

 Sequential read when iterating

BFS on Multi-core CPU

for (i=0;i<N;i++) {
if (C[i] == curr) {
…

}
} 

Turns out to be okay, 
due to small-world property



BFS on Multi-core CPU

 Small world property?

 A.k.a. six-degrees of separation

 Diameter (maximum hop count between any two 
nodes) is small even with large graphs 

 (# Nodes) in each BFS level grows, exponentially

LV0 LV1 LV2 LV3 LV4 LV5 LV6

LV1,2

LV3,4,5

LV6,7

Time (ms)

O(N) nodes 
belong to a 
few levels in 
the middle

Most 
execution
time spent in 
these levels



 Results 

 1.2x ~ 1.5x performance improvement 

 Performance gap widens as graph size grows

 (+ Our algorithm is easier to implement)

BFS on Multi-core CPU

Measured on Nehalem-EP CPU (2 socket x 4core x 2 HyperThread)



Architectural Effects  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Nehalem

CPU

Fermi

GPU

Core

CPU

Tesla 

GPU

B
il
lo

n
 E

d
g
e
s
 P

e
r 

S
e
c
 

RMAT 16 RMAT 32 Uniform 16 Uniform 32

X

X

X

X

2 socket * 4 core * 2 
hyper-threading

2 socket * 4 
core

Memory 
Bandwidth

Architectural 
Improvement

*For Fermi GPU, L1 has been disabled since it affected the performance negatively.

16 and 32 million nodes
avg degree = 8



DSL Compiler

 Currently under development

 Goal: 

 Maps language constructs with their best impl.

 Source-to-Source translation.

DSL 
Description

Your Complex 
Software’

DSL
Compiler

Parallel
C++

CUDA

……

LIB (& RT) LIB (& RT)

Graph Analysis
Routines

Your Complex 
Software

Rewrite

Link



Interfacing with user-world

 Translate entry function(s) 

 Arguments translation

 Int  int32_t, Double  double, Set  Array, … 

 Node/Edge/Graph  Library data type (node_t, edge_t, 
graph_t, …)

 Entry function should be called in a single-thread context (+ 
Whole GPU is available)

 Adopting user-defined functions, data types. 

 Like ASM in the C/C++

 Simple text transformation

 Bypass type-checking

Procedure(G:Graph, val: N_P<Int>(G), z : $Utype){

Foreach (t: G.Nodes)

t.z = $UserFun (t.val, z);

}



Using other graph library

 Want to use other graph library?

Language Specific 
Transformation &
Code Generation

Library Specific
Code Generation

Graph Library

Graph library may be replaced with other 
implementation (with small modification).
However, the new graph library should allow 
parallel access at least. 



Result: Compiler Output

 Compiler is still under development

Green-Marl C++



Result: Compiler Output

 Sanity check

 Manual implementation of Betweenness Centrality 

(i.e. what the compiler should emit out. )

 Showed ~2x improvement 

 over a publicly available parallel implementation (8-
core CPU)

 Gain comes from using a better BFS scheme



Issues with Delite Implementation

 Syntax
 dynamic property declaration

 @ syntax

 Rule Enforcing
 Reduction rules 

 “UpNbrs” is only meaningful inside BFS.

N_P<Float>(G) X;

G.X = 0;

Foreach (t: G.Nodes) {

If (t.flag) {

Foreach (n: t.Nbrs) {

n.X += t.cost @ t;  

}

}

t.X += t.cost @ t; 

}

Val X = N_P[Float](X, G); 

X = 0; 

foreach (t <- Nodes(G)) {

if (flag(t)) {

foreach (n <- Nbrs(t)) {

X(n) += (cost(t), t);

}

}

X(t) += (cost(t), t);

}



Issues with Delite Implementation

 Transformation

 Patterns that are far from each other

 Lack of Symbol table

 Parallel Execution Strategy

 Code generation

 CUDA 

 BFS Pattern { …

InBFS (v: G.Nodes From s) {

}

… // some sentences

If (…) {

InRBFS(v:G.Nodes To s) {…} 

}  

}



Issues with Delite Implementation

Lex Parse
Type

Check
Trans-

formation
Opti-

mization
Code

Generation

Syntax has to be 
modified

Type check is free.

Any other rules I make, I have
to enforce them by myself

Transformation should be 
described as pattern-
matching. 

Optimization and 
Parallelization are

independent

Custom code generation 
patterns (e.g. BFS) How many Delite-Ops do I use?



Distributed Graph Processing 
(Future Works)

 Fundamental Issue

 Graph: random, small world, scale-free 

 Far from planar

 Impossible to find a good partition 

 Surface to volume ratio is high

 Communication overhead dominates

 Pregel

 Google’s framework for distributed graph processing 

 Conceptually similar to MapReduce

 Let’s just live with latency. Concentrate on bandwidth. 

 Bulk-Synchronous Consistency

 A framework is provided - the user fills in custom computation.

 However, the user function writing is not very intuitive. 



Distributed Graph Processing 
(Future Works)

 PageRank Example

Pregel Program Green-Marl Program
Can we find 
automatic 

translations?



Summary

 DSL-based approach

 Productivity: Enables elegant algorithm description 

 Performance: Maps (best/good) parallel 
implementation 

 Portability: Generates CPU and GPU version

 Flexibility: Language constructs are more than a 
library  

 Current Status

 A draft of language specification

 Studies on BFS implementation 

 Prototype compiler on the way



Questions?

“Programs must be written for people to read, and only 
incidentally for machines to execute.”

– Abelson and Sussman



No more slides


