Easy and Efficient Graph Analysis:
A DSL-based Approach

Graph Analysis

= Graph
= Fundamental data representation
= Captures random relationship between data entities
= You learned about it in CS 101
= Why graph once again?
= New applications (in lucrative markets) use graph

analysis— social networks, computational biology, ...

« e.g> Analyze molecular interaction graph in your body
cells to identify key proteins

= Requires significant processing power
= Underlying graph size is large and growing
« Some algorithms are expensive, i.e. O(n”~2) or more
= Classic ILP, Vector Units, FLOPs does not help much

= Let’s use parallelism

Parallel graph analysis

Opportunities m Challenges

= Plenty of inherent (data-) = Hard to get correct
parallelism in large graph implementation
Instances Performance depends on

= 100+ years of studies in implementation (even with
graph theory the same algorithm)

= Parallel machines are now The best implementation
and everywhere differs from machine to

(Multi-core CPU and GPU) machine
Algorithms need to be

customized

What's wrong with libraries?

m There are 30+ graph libraries/packages

m [ssues in fixed library implementation
= Parallelism?
= Portability?

= New/customized algorithm?

= What if someone finds a better implementation
for the un-customized algorithm?

Our approach: |
DSL for graph analysis

Identify key components in graph algorithms as define them
language constructs.

Find (the best / a good) implementation of those constructs.

Let the compiler translate high-level algorithm written in DSL
into a high-performing low-level implementation.

= Possibly, apply high-level optimization on the way

Graph Algorithm
Algorithm Graph DSL Implementation

Foreach (t: G. For(i=0;i<G.num
Nodes) Nodes();i++) {
t.sigma +=

[__fetch_and_ad
d (G.nodes]i],

)
— -| DsL A
Compiler

Approaches

m DSL design

m Implementation of language constructs
= BFS for GPU
= BFS for CPU

m Compiler development

Language Design

= Domain property
= The graphs are sparse, small-world, scale-free
« Graph is not mesh-like!
= Graph modification is less frequent than graph analysis

m Language Design: an inductive process

= Examine existing algorithms = Extract language
constructs

= Check if these algorithms can be naturally expressed
with the language

= Check if the compiler can figure out inherent parallelism
from the description.

*The DSL is named as Green-Marl which means graph language (1&g Z) in Korean.

AN

|
|

PAALEL

A Gllmpse of DSL Syntax i

E
I
|l

|

[

= Example> Betweenness Centrality

m A measure that tells how center a node is located
in the graph

= Frequently used in social network analysis
= Computationally expensive: O(NM)

A Glimpse of DSL Syntax

m Original Algorithm

Aldgorithm 1: Betweenness centrality in unweighted graphs
Cplv] — 0, v e V7
for = = ¥V do

Procedure comp BC(G: Graph, BC: Node Property<Float>(G))

S Foreach (s: G.Nodes) |

Node Customized BFS
Node Property<Float»>(G) sigma Iteration
Node_Property<Float>(G) delta =>» Need good BFS

implementation

G.sigma : /f Initialize

G.delta
.sigma

// BF5 order iteration from s
Compute sigma from parents InBFS(v: G.Nodes From s) {

v.sigma = // Summing over BFS5 parents
Sum (w:v.UplNbrs) {w.sigma};

e " 1

// Reverse-BFS order iteration to s
InRBFS(v:G.Nodes To s)(wv!=s) {
Reverse v.delta = /f/ Summing over BFS children
BFS Sum (w:v.DownNbrs) {
Order v.sigma / w.sigma * (1+ w.delta) };

v.delta S/ accumulate BC

Compute delta from children

Language Philosophy

m Goal is not to magically parallelize your sequential graph
algorithm

= Would you believe it, if I claim so?

= People have devoted their entire career in developing parallel
graph algorithms

m Instead, it allows you to express your algorithm
(sequential or parallel) in a natural way

m The compiler grabs out the inherent parallelism in the
algorithm and exploit it in the implementation

= e.g. Betweenness Centrality is not designed for parallel execution

Consistency Model

m We are targeting different architectures: CPU, GPU,
(Cluster)

= The language, thus, assumes the most relaxed
form of consistency

Foreach (t: G.nodes) {
Int z = Sum (v: t.Nbrs) {v.Val};
t.vVal = z; « Conceptually, Foreach is instantiated all at\
the same time.

« There is no guarantee update to Val will
be visible (or not) to other instances, until
the end of foreach

» It's not even Total Store Ordering .

= Enforcing order out of chaos
= High-level operations are atomic (e.g. add to a set)
= Reduction and Deferred assignments

Consistency Model

m Deferred assignment

Foreach (t: G.Nodes
Int z = Sum (v:
t.Val <= z @ t;

) |
t.Nbrs) {v.Val};

<

4

m Reduction assignment

-

Write to Val happens at the
\Lend of iteration bound by t.

Nodes) {

Foreach (v: G.
v.B = Min (t: v.Nbrs) {t.Val };

If the gra _ o _
we can ey Reduction by minimum is

order to r{ resolved at the end of foreach
reduction| iteration bound by t.

N

@@ ®
N 254

CPU: comp & swap
GPU: atomicMin
Cluster: MapReduce

| need Sequential Consistency!

m Is this what you want?

Foreach (t: G.nodes) {
Atomic {
Int z Sum (v: t.Nbrs) {v.Val};
t.Val Z;
b @t
}

= Your algorithm is not deterministic, you know
= We may add it to the language, though

= Coloring like Listz [Big setup overhead]

= Grab a lock of neighbors

« Performance is not guaranteed; due to the graph
shape (i.e. not mesh)

Reduction Assignment vs.
Reduction Operator

m Reduction Assignment (spread-out)

Int z = 0;
Foreach (n:G.Nodes) {
If (n.color == 0) { z += n.val @ n;} e
Else { *=
Foreach (t: n.Nbrs) (t.color == 1) min=

z += t.val @ n; max=
argmax=
argmin=
+=1

I8

= Reduction Operator (in-place)

Int z = 0;
Foreach (n:G.Nodes) {
z = Sum (t:n.Nbrs) (t.color==0) {t.val};

b

A Few More on Syntax

= Nodes(Edges) are bound to a graph

Graph G1, G2;
Node (G1) t1;
Node (G2) t2;
tl = t2; // Type Error!

4

m Fields can be defined dynamically and passed as

arguments

Graph G;
While (..) {
Node Property<Int>(G) cap;

" Procedure Foo
Foo (G, cap):;

} // cap has static scol ¢

/] ..

}

Call common
routines with
different fields.

(G:Graph, d:Node Property<Int> (G))

A Few More on Syntax

m Sets
= Operation to a set is atomic: Add/Remove/IsIn
= Set: bound to a graph

NodeSet (G) NSet;
EdgeSet (G) ESet;
NbrSet (G) NBSet;
NbrEdgeSet (G) NBESet;

Foreach (t: G.Nodes)
Foreach (n: t.Nbrs)
If (n.value > THRESHOLD)
t->NBSet.Add (n) ;

}

A Few More on Syntax

m Static Scope

= Variable name shadowing is not allowed.

Foreach (t: G.Nodes) {

Int k;
Foreach (n: t.Nbrs) {
Int t; // Error;

}
Int n; // Okay;

}

Some Rules to be Enforced

m Cannot write to an iterator

Node (G) n;

Foreach (t: G.Nodes) {
n =t; // Okay
t = n; // Error

) 7

m Cannot write to a property reference

N _P<Int> (G) val;

N _P<Int> (G) cap;

Node (G) n;

n.val = n.cap // Okay;
G.val = G.cap // Okay;
cap = val; // Error;

Some Rules to be Enforced

m Reduce (Defer) Assignment should be bound once and

only once.

Int z 0,
Foreach (t: G.Nodes) {
z += t.val @ t;
Foreach (n: t. Nbrs)
z += n.val Q@ t;
z += n.val @ n;
z min= n.val @t;

3; // Error

: // Error

{
// Okay
// Error
// Error

Parallelization

m Assumption
= Graph is large
= Otherwise uninteresting.

= One operation is enough to consume all the cache & memory
bandwidth

m Strategy
= CPU: Parallelize inner-most graph-wide iteration
= GPU: two-level parallelization: sub-warp + thread

Foreach (t: G.Nodes) {

Foreach (n: G.Nodes) { GPU:

A
< subwarp (outer)
N thread(inner)

} .

Foreach (r: n.Nbrs) {

Parallelization

= Optimization after Parallel Region Decision

Foreach (s: G.Nodes) {

Foreach (t: G.Nodes)

{

t.val += ... @ s;
}

Reduction can
be implemented with
normal write

Foreach (s: G.Nodes) {

N P<Int> temp;
Foreach (t: G.Nodes)

}

t.temp += .. @ t;

s.val += s.temp @ s;

No need to create

(and delete) temp,

O(N) times.

(Move temp-define
out of s-loop)

Language Implementation

m Breadth-First Search (BFS)

= An systematical way of traversing a graph
= Enforces a natural (partial) ordering of the graph
= Serves as a building block for other algorithms

(Connected components, Betweenness centrality, Max
flow computation...)

= Many papers about efficient BFS implementation
(Multi-Core CPU, GPU, Cell, Cray XMT, Cluster) ...

BFS on GPU

m Potentials of GPU in graph analysis
= Large memory bandwidth (but with limited capacity)
+ Latency hiding scheme
= Massively parallel hardware

= Previous implementation [Harish and Narayanan

2007]

= Level synchronous, frontier-expansion method.
= PRAM-style; each thread processes a node.

= Problem:

= Performance dropped heavily when applied to scale-
free graphs (i.e. skewed degree distribution)

BFS on GPU

m What causes this?

= The trait of GPU architecture = Threads in a warp are
executed in a synchronous way

= Skewed degree distribution = Intra-warp workload
imbalance

= Our implementation
[PPOPP 2011]
= Work assignment
=» per a subset of warp
= Trade off under-utilization

and workload imbalance

FHrAA Fandom Livedourmal Fatents

1| <14 8 116 32

i H =] i - BWwarp2z DOwarp1s Bwampd Dwarpd
A unit of work A unit of work Previous L : : ;

per each thread per each warp Measured on GTX275 (Tesla GPU)

BFS on Multl-core CPU

m Level-synchronous Parallel BFS

Algorithm 1 Level Synchronous Parallel BFS
1: procedure BFES(r:Node)
V=C=0:.N = {r} Lr;a Visited, Current, and Next sel:}
rlev = level = 0
repeat ,
= _"1"-'7; N: @
for Node « € O do e in parallel
for Node n = Nbric) do e in parallel
if n & V then
N=Nu{nh V=V u{n}
1O nlev = level + 1
11: level++
12: until v =0

e

5:
Las
T:
&:

b

m Previous Implementation [Agarwal et al 2010]

= Adopted a few techniques: prefetech, bitmap (Visited), non-
blocking queue (Next/Curr Set)

= Non-blocking queue: sophisticated implementation
= Reduce synchronization and cache-cache coherence traffic.
=« Not much implementation details revealed in the paper.

BFS on Multl-core CPU

for Node ¢ £ ' do

=

for (i=0:i<N;i++) {
if (C[i] == curr) {

}

}

m Our approach [under submission]

= Implement Curr/Next set as a (single) byte-array.
= Visited set is still a bitmap

= Cons

« (Iteration over set) == (Read the whole byte array)

= Pros

= No synchronization when writing
=« Sequential read when iterating

4

Turns out to be okay,
due to small-world property

BFS on Multl-core CPU

= Small world property?

= A.k.a. six-degrees of separation

= Diameter (maximum hop count between any two
nodes) is small even with large graphs

= (# Nodes) in each BFS level grows, exponentially

Time (ms)
LVO LV1 LV2 LV3 L(\r LV5 LV6 1000

) .
O Most

O O execution a0

time spent in \

these levels
400

O(N) nodes
belong to a 200
few levels in
the middle 0

BFS on Multi-core CPU

m Results
= 1.2X ~ 1.5x performance improvement
= Performance gap widens as graph size grows
s (+ Our algorithm is easier to implement)

Billion Edges per Sec
Billion Edges per bec

Oueus Ouesues

FRead +Uusus FRead +Uusues
CPU+GEPL CFPU+GFU
o SCLlo-EF [18] . =C10-EF [18]

] [o_8 1.2 1.6 - o 0.4 o.8 1.2 1.6
Mum Ecdge=s [(Billion) Mum Edges (Billion)

(c) Edges (Uniform) (d) Edges (RMAT)
Measured on Nehalem-EP CPU (2 socket x 4core x 2 HyperThread

1
-9
-8
-
-B
-5
-4
-3
-2
-1

o o o o o Qo o o 0Q
o rFr M W & 0 0 DA r

o

Architectural Effects

*For Fermi GPU, L1 has been disabled since it affected the performance negatively.

BRMAT16 DORMAT32 BEUniform16 BuUniform32| 16 and 32 million nodes
avg degree = 8

Architectural
Improvement\

(@)
0]
w
S
o
o
0
o)
o)
©
L
c
i)
=

Nehalem Fermi Core
CPU GPU CPU
Memory

2 socket * 4 core * 2 dwidth 2 socket * 4
hyper-threading Bandwidt core

DSL Compiler

m Currently under development

= Goal:
= Maps language constructs with their best impl.
= Source-to-Source translation.

DSL J DSL

Description Compiler

Parallel

Ct CUDA

J

| CHt |
| LIB (& RT) | LIB (& RT)

Graph Analysis
Routines

Your Complex Your Complex
Software Software’

Interfacing with user-world

Translate entry function(s)
Arguments translation
Int = int32_t, Double = double, Set = Array, ...

Node/Edge/Graph = Library data type (node_t, edge_t,
graph_t, ...)

Entry function should be called in a single-thread context (+
Whole GPU is available)

Adopting user-defined functions, data types.
= Like ASM in the C/C++
= Simple text transformation
= Bypass type-checking

Procedure (G:Graph, val: N P<Int>(G), z : SUtype) {
Foreach (t: G.Nodes)
t.z = SUserfFun (t.val, 2z);

Using other graph library

= Want to use other graph library?

Language Specific
Transformation &
Code Generation

Library Specific
Code Generation

Graph library may be replaced with other
implementation (with small modification).
However, the new graph library should allow
parallel access at least.

Result: Compiler Output

m Compiler is still under development

= tayo@drink-1:~

/* BLOCK COMMENT =/
INE Comment

float foo(gm_graph& G, node_t n,

f test for general statements int32_t* _ 6 d, float& o)
Procedure foo {

{(G: Graph, n: Node(G), int3zz t _t1 = -({(s + + 3) / 5) + 2;

d: Node_Property<Int>(G) ;] for (int i=8; 1 < G.numModes(}; i++) _ & dfi]

+ + 3} / 5) =

int3z_t j,k;
k = 8;
j=k+1;
for (nodeiter_t g = @; g < G.numModes()}; g ++)

Foreach(g: G.Nodes)} (g.d » if (_ G diq] > &)
{ {

MNode(G) t; node_t t;

Edge(G) e; edge_t e;

M_P<Float>(G) Aj; Jf Node_| rty loat* _ G_Aj;

E_P<Float>{G) B; 5 new float [G.numNodes()

N_P<Bool>(G) C; __G_B;

= 1; | new float [G.numEdges()

P numMdodes()y] ;
-d;

H

g.Nbrs})

for (index_t _ begin[q];_re < G.begin[g#1] ; _re ++)
i

[T T

(r.d > 3); nodeiter

.

.node_idx [_re];

{k: t.BFs_Parents) { k.d }; _ & d[t]
_ & _A[t]
_ G _B[e]
_ G _Ble]

+ 7

_G_A[t];
iy
delete []

Green-Marl Ciz2 C++

Result: Compiler Output

m Sanity check
= Manual implementation of Betweenness Centrality
(i.e. what the compiler should emit out.)

= Showed ~2x improvement

= over a publicly available parallel implementation (8-
core CPU)

=« Gain comes from using a better BFS scheme

Issues with Delite Implemenﬁiﬁm

® Syntax
= dynamic property declaration

s @ syntaX [y p<Float> (G) x; Val X = N _P[Float] (X, G);
G.X = 0; X =0;
Foreach (t: G.Nodes) { fo;each
If (t.flag) f{
Foreach (n: t.Nbrs) {
n.X += t.cost @ t;

}
}
t.X += t.cost @ t;

}

4

= Rule Enforcing
= Reduction rules
“UpNbrs” is only meaningful inside BFS.

. :
Issues with Delite Implemenﬁﬁm

m Transformation
= Patterns that are far from each other
= Lack of Symbol table

m Parallel Execution Strategy

m Code generation
= CUDA
= BFS Pattern {

InBFS (v: G.Nodes From
}

.. // some sentences
If (..) {

InRBFS (v:G.Nodes To

}
}

Issues with Delite Implement:

(It

Al
|

Lex

Parse

>

Type |, | Trans- Opti- Code

Check

2~

formation| | mization| Generation
A

Syntax has to be
modified

/

-

.

Type check is free.

to enforce them by myself

Transformation should
described as pattern-
matching.

Y

Any other rules | make, | have

/

/

Optimization and

Parallelization are
independent

)

-

How many Delite-Ops do | use?

Custom code generation
patterns (e.g. BFS)

Distributed Graph Processing
(Future Works)

m Fundamental Issue
= Graph: random, small world, scale-free
= Far from planar
= Impossible to find a good partition
= Surface to volume ratio is high
= Communication overhead dominates

m Pregel
= Google’s framework for distributed graph processing
= Conceptually similar to MapReduce
« Let’s just live with latency. Concentrate on bandwidth.
=« Bulk-Synchronous Consistency

« A framework is provided - the user fills in custom computation.
« However, the user function writing is not very intuitive.

Distributed Graph Processing
(Future Works)

m PageRank Example

class PageRankVertex galv ‘ageRank (G:

: public Vertex<double, void, double> { n rank: TOpErty<
public: -
virtual void Compute(Messagelterator msgs) {

if (superstep() »= 1) {

double sum = 0; nt N = G.NumNodes;
for (; !'msgs->Dona(); msgs->Naxt()) G.p rank = 1 / (Float) G.NumNodes;
gum += msgs->Value();
#MutableValue() =
0.15 / NumVertices() + 0.85 * sum;
}

if (superstep() < 30) {
const intéd n = GetOutEdgeIterator().size();
SendMessageToAlllNeighbors(GetValue() / n);

} else { t.p rank
VoteToHalt () ; S

} While (diff > e);

(" can we find
Pregel Program automatic Green-Marl Program

translations?

Summary

m DSL-based approach
Productivity: Enables elegant algorithm description

Performance: Maps (best/good) parallel
implementation

Portability: Generates CPU and GPU version

Flexibility: Language constructs are more than a
library

m Current Status
= A draft of language specification
= Studies on BFS implementation
= Prototype compiler on the way

Questions?

“Programs must be written for people to read, and only
iIncidentally for machines to execute.”
— Abelson and Sussman

V)
Q
O
%
O
LS
O
S
O
Z

