
Easy and Efficient Graph Analysis:

A DSL-based Approach

Sungpack Hong and Kunle Olukotun

Pervasive Parallelism Laboratory
Stanford University

Graph Analysis

 Graph

 Fundamental data representation

 Captures random relationship between data entities

 You learned about it in CS 101

 Why graph once again?

 New applications (in lucrative markets) use graph
analysis– social networks, computational biology, …

 e.g> Analyze molecular interaction graph in your body
cells to identify key proteins

 Requires significant processing power

 Underlying graph size is large and growing

 Some algorithms are expensive, i.e. O(n^2) or more

 Classic ILP, Vector Units, FLOPs does not help much

 Let’s use parallelism

Parallel graph analysis

 Opportunities

 Plenty of inherent (data-)
parallelism in large graph
instances

 100+ years of studies in
graph theory

 Parallel machines are now
and everywhere

(Multi-core CPU and GPU)

 Challenges

 Hard to get correct
implementation

 Performance depends on
implementation (even with
the same algorithm)

 The best implementation
differs from machine to
machine

 Algorithms need to be
customized

What’s wrong with libraries?

 There are 30+ graph libraries/packages

 Issues in fixed library implementation

 Parallelism?

 Portability?

 New/customized algorithm?

 What if someone finds a better implementation
for the un-customized algorithm?

Our approach:
DSL for graph analysis

1. Identify key components in graph algorithms as define them
language constructs.

2. Find (the best / a good) implementation of those constructs.

3. Let the compiler translate high-level algorithm written in DSL
into a high-performing low-level implementation.

 Possibly, apply high-level optimization on the way

Algorithm
Implementation

DSL
Compiler

For(i=0;i<G.num
Nodes();i++) {

__fetch_and_ad
d (G.nodes[i],
…)

……

Edgeset

Foreach

BFS

Foreach (t: G.
Nodes)

t.sigma +=
…

Graph DSL

Graph
Algorithm

Approaches

 DSL design

 Implementation of language constructs

 BFS for GPU

 BFS for CPU

 Compiler development

Language Design

 Domain property

 The graphs are sparse, small-world, scale-free

 Graph is not mesh-like!

 Graph modification is less frequent than graph analysis

 Language Design: an inductive process

 Examine existing algorithms Extract language
constructs

 Check if these algorithms can be naturally expressed
with the language

 Check if the compiler can figure out inherent parallelism
from the description.

*The DSL is named as Green-Marl which means graph language (그림 말) in Korean.

A Glimpse of DSL Syntax

 Example> Betweenness Centrality

 A measure that tells how center a node is located
in the graph

 Frequently used in social network analysis

 Computationally expensive: O(NM)

A Glimpse of DSL Syntax

 Original Algorithm

Meaning?

Parallelism?s

w w

v

BFS
Order

Compute sigma from parents

s

v

w w w

Reverse
BFS

Order

Compute delta from children

Customized BFS
Iteration
 Need good BFS
implementation

Language Philosophy

 Goal is not to magically parallelize your sequential graph
algorithm

 Would you believe it, if I claim so?

 People have devoted their entire career in developing parallel
graph algorithms

 Instead, it allows you to express your algorithm
(sequential or parallel) in a natural way

 The compiler grabs out the inherent parallelism in the
algorithm and exploit it in the implementation

 e.g. Betweenness Centrality is not designed for parallel execution

Consistency Model

 We are targeting different architectures: CPU, GPU,
(Cluster)

 The language, thus, assumes the most relaxed
form of consistency

 Enforcing order out of chaos

 High-level operations are atomic (e.g. add to a set)

 Reduction and Deferred assignments

Foreach (t: G.nodes) {

Int z = Sum (v: t.Nbrs) {v.Val};

t.Val = z;

}

• Conceptually, Foreach is instantiated all at
the same time.

• There is no guarantee update to Val will
be visible (or not) to other instances, until
the end of foreach

• It’s not even Total Store Ordering

Consistency Model

 Deferred assignment

 Reduction assignment

Foreach (t: G.Nodes) {

Int z = Sum (v: t.Nbrs) {v.Val};

t.Val <= z @ t;

}
Write to Val happens at the
end of iteration bound by t.

Foreach (t: G.Nodes) {

Foreach (v: t.Nbrs) {

v.B min= t.Val @ t;

}

}

t1 t2 t3

v1 v2

Foreach (v: G.Nodes) {

v.B = Min (t: v.Nbrs) {t.Val };

}

t1 t2 t3

v1 v2

CPU: comp & swap
GPU: atomicMin

Cluster: MapReduce

If the graph is undirected,
we can exchange iteration
order to remove expensive
reduction

Reduction by minimum is
resolved at the end of foreach
iteration bound by t.

I need Sequential Consistency!

 Is this what you want?

 Your algorithm is not deterministic, you know

 We may add it to the language, though

 Coloring like Listz [Big setup overhead]

 Grab a lock of neighbors

 Performance is not guaranteed; due to the graph
shape (i.e. not mesh)

Foreach (t: G.nodes) {

Atomic {

Int z = Sum (v: t.Nbrs) {v.Val};

t.Val = z;

} @ t

}

Reduction Assignment vs.
Reduction Operator

 Reduction Assignment (spread-out)

 Reduction Operator (in-place)

Int z = 0;

Foreach(n:G.Nodes) {

If (n.color == 0) { z += n.val @ n;}

Else {

Foreach (t: n.Nbrs)(t.color == 1)

z += t.val @ n;

}}

Int z = 0;

Foreach(n:G.Nodes) {

z = Sum (t:n.Nbrs)(t.color==0) {t.val};

}}

+= Sum
*= Product
min= Min
max= Max
argmax= Argmax
argmin= Argmin
+= 1 Count

A Few More on Syntax

 Nodes(Edges) are bound to a graph

 Fields can be defined dynamically and passed as
arguments

Graph G1, G2;

Node(G1) t1;

Node(G2) t2;

t1 = t2; // Type Error!

Graph G;

While (…) {

Node_Property<Int>(G) cap;

…

Foo(G, cap);

} // cap has static scope

Procedure Foo

(G:Graph, d:Node_Property<Int>(G))

{

// …

}

Call common
routines with

different fields.

A Few More on Syntax

 Sets

 Operation to a set is atomic: Add/Remove/IsIn

 Set: bound to a graph

NodeSet(G) NSet;

EdgeSet(G) ESet;

NbrSet(G) NBSet;

NbrEdgeSet(G) NBESet;

Foreach (t: G.Nodes)

Foreach(n: t.Nbrs)

If (n.value > THRESHOLD) {

t->NBSet.Add(n);

}

A Few More on Syntax

 Static Scope

 Variable name shadowing is not allowed.

Foreach (t: G.Nodes){

Int k;

Foreach(n: t.Nbrs) {

Int t; // Error;

}

Int n; // Okay;

}

Some Rules to be Enforced

 Cannot write to an iterator

 Cannot write to a property reference

Node(G) n;

Foreach(t: G.Nodes) {

n = t; // Okay

t = n; // Error

}

N_P<Int> (G) val;

N_P<Int> (G) cap;

Node(G) n;

n.val = n.cap // Okay;

G.val = G.cap // Okay;

cap = val; // Error;

Some Rules to be Enforced

 Reduce (Defer) Assignment should be bound once and
only once.

Int z = 0;

Foreach(t: G.Nodes) {

z += t.val @ t;

Foreach (n: t. Nbrs) {

z += n.val @ t; // Okay

z += n.val @ n; // Error

z min= n.val @t; // Error

}

z = 3; // Error

}

Z += 3; // Error

Parallelization

 Assumption

 Graph is large

 Otherwise uninteresting.

 One operation is enough to consume all the cache & memory
bandwidth

 Strategy

 CPU: Parallelize inner-most graph-wide iteration

 GPU: two-level parallelization: sub-warp + thread

Foreach(t: G.Nodes) {

…

Foreach (n: G.Nodes) {

…

Foreach (r: n.Nbrs) {

}

}

}

GPU:
subwarp (outer)
thread(inner)

Parallelization

 Optimization after Parallel Region Decision
Foreach(s: G.Nodes) {

Foreach(t: G.Nodes) {

t.val += … @ s;

}

}

Reduction can
be implemented with
normal write

Foreach(s: G.Nodes) {

N_P<Int> temp;

Foreach(t: G.Nodes) {

t.temp += … @ t;

}

s.val += s.temp @ s;

}

No need to create
(and delete) temp,
O(N) times.
(Move temp-define
out of s-loop)

Language Implementation

 Breadth-First Search (BFS)
 An systematical way of traversing a graph

 Enforces a natural (partial) ordering of the graph

 Serves as a building block for other algorithms

(Connected components, Betweenness centrality, Max
flow computation…)

 Many papers about efficient BFS implementation

(Multi-Core CPU, GPU, Cell, Cray XMT, Cluster) …

 Potentials of GPU in graph analysis

 Large memory bandwidth (but with limited capacity)

+ Latency hiding scheme

 Massively parallel hardware

 Previous implementation [Harish and Narayanan

2007]

 Level synchronous, frontier-expansion method.

 PRAM-style; each thread processes a node.

 Problem:

 Performance dropped heavily when applied to scale-
free graphs (i.e. skewed degree distribution)

BFS on GPU

 What causes this?

 The trait of GPU architecture Threads in a warp are
executed in a synchronous way

 Skewed degree distribution Intra-warp workload
imbalance

 Our implementation

[PPOPP 2011]

 Work assignment

 per a subset of warp

 Trade off under-utilization

and workload imbalance

BFS on GPU

Previous

Measured on GTX275 (Tesla GPU)

1 32

A unit of work
per each thread

A unit of work
per each warp

4 8 16

 Level-synchronous Parallel BFS

 Previous Implementation [Agarwal et al 2010]

 Adopted a few techniques: prefetech, bitmap (Visited), non-
blocking queue (Next/Curr Set)

 Non-blocking queue: sophisticated implementation

 Reduce synchronization and cache-cache coherence traffic.

 Not much implementation details revealed in the paper.

BFS on Multi-core CPU

; N= Ǿ

 Observations

 You don’t need a queue. You need a set.

 Cache traffic due to the queue is thus artificial.

 Performance is more governed by memory traffic
(capacity miss) rather than coherence traffic.

 Our approach [under submission]

 Implement Curr/Next set as a (single) byte-array.

 Visited set is still a bitmap

 Cons

 (Iteration over set) == (Read the whole byte array)

 Pros

 No synchronization when writing

 Sequential read when iterating

BFS on Multi-core CPU

for (i=0;i<N;i++) {
if (C[i] == curr) {
…

}
}

Turns out to be okay,
due to small-world property

BFS on Multi-core CPU

 Small world property?

 A.k.a. six-degrees of separation

 Diameter (maximum hop count between any two
nodes) is small even with large graphs

 (# Nodes) in each BFS level grows, exponentially

LV0 LV1 LV2 LV3 LV4 LV5 LV6

LV1,2

LV3,4,5

LV6,7

Time (ms)

O(N) nodes
belong to a
few levels in
the middle

Most
execution
time spent in
these levels

 Results

 1.2x ~ 1.5x performance improvement

 Performance gap widens as graph size grows

 (+ Our algorithm is easier to implement)

BFS on Multi-core CPU

Measured on Nehalem-EP CPU (2 socket x 4core x 2 HyperThread)

Architectural Effects

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Nehalem

CPU

Fermi

GPU

Core

CPU

Tesla

GPU

B
il
lo

n
 E

d
g
e
s
 P

e
r

S
e
c

RMAT 16 RMAT 32 Uniform 16 Uniform 32

X

X

X

X

2 socket * 4 core * 2
hyper-threading

2 socket * 4
core

Memory
Bandwidth

Architectural
Improvement

*For Fermi GPU, L1 has been disabled since it affected the performance negatively.

16 and 32 million nodes
avg degree = 8

DSL Compiler

 Currently under development

 Goal:

 Maps language constructs with their best impl.

 Source-to-Source translation.

DSL
Description

Your Complex
Software’

DSL
Compiler

Parallel
C++

CUDA

……

LIB (& RT) LIB (& RT)

Graph Analysis
Routines

Your Complex
Software

Rewrite

Link

Interfacing with user-world

 Translate entry function(s)

 Arguments translation

 Int int32_t, Double double, Set Array, …

 Node/Edge/Graph Library data type (node_t, edge_t,
graph_t, …)

 Entry function should be called in a single-thread context (+
Whole GPU is available)

 Adopting user-defined functions, data types.

 Like ASM in the C/C++

 Simple text transformation

 Bypass type-checking

Procedure(G:Graph, val: N_P<Int>(G), z : $Utype){

Foreach (t: G.Nodes)

t.z = $UserFun (t.val, z);

}

Using other graph library

 Want to use other graph library?

Language Specific
Transformation &
Code Generation

Library Specific
Code Generation

Graph Library

Graph library may be replaced with other
implementation (with small modification).
However, the new graph library should allow
parallel access at least.

Result: Compiler Output

 Compiler is still under development

Green-Marl C++

Result: Compiler Output

 Sanity check

 Manual implementation of Betweenness Centrality

(i.e. what the compiler should emit out.)

 Showed ~2x improvement

 over a publicly available parallel implementation (8-
core CPU)

 Gain comes from using a better BFS scheme

Issues with Delite Implementation

 Syntax
 dynamic property declaration

 @ syntax

 Rule Enforcing
 Reduction rules

 “UpNbrs” is only meaningful inside BFS.

N_P<Float>(G) X;

G.X = 0;

Foreach (t: G.Nodes) {

If (t.flag) {

Foreach (n: t.Nbrs) {

n.X += t.cost @ t;

}

}

t.X += t.cost @ t;

}

Val X = N_P[Float](X, G);

X = 0;

foreach (t <- Nodes(G)) {

if (flag(t)) {

foreach (n <- Nbrs(t)) {

X(n) += (cost(t), t);

}

}

X(t) += (cost(t), t);

}

Issues with Delite Implementation

 Transformation

 Patterns that are far from each other

 Lack of Symbol table

 Parallel Execution Strategy

 Code generation

 CUDA

 BFS Pattern { …

InBFS (v: G.Nodes From s) {

}

… // some sentences

If (…) {

InRBFS(v:G.Nodes To s) {…}

}

}

Issues with Delite Implementation

Lex Parse
Type

Check
Trans-

formation
Opti-

mization
Code

Generation

Syntax has to be
modified

Type check is free.

Any other rules I make, I have
to enforce them by myself

Transformation should be
described as pattern-
matching.

Optimization and
Parallelization are

independent

Custom code generation
patterns (e.g. BFS) How many Delite-Ops do I use?

Distributed Graph Processing
(Future Works)

 Fundamental Issue

 Graph: random, small world, scale-free

 Far from planar

 Impossible to find a good partition

 Surface to volume ratio is high

 Communication overhead dominates

 Pregel

 Google’s framework for distributed graph processing

 Conceptually similar to MapReduce

 Let’s just live with latency. Concentrate on bandwidth.

 Bulk-Synchronous Consistency

 A framework is provided - the user fills in custom computation.

 However, the user function writing is not very intuitive.

Distributed Graph Processing
(Future Works)

 PageRank Example

Pregel Program Green-Marl Program
Can we find
automatic

translations?

Summary

 DSL-based approach

 Productivity: Enables elegant algorithm description

 Performance: Maps (best/good) parallel
implementation

 Portability: Generates CPU and GPU version

 Flexibility: Language constructs are more than a
library

 Current Status

 A draft of language specification

 Studies on BFS implementation

 Prototype compiler on the way

Questions?

“Programs must be written for people to read, and only
incidentally for machines to execute.”

– Abelson and Sussman

No more slides

